483 lines
16 KiB
TeX
483 lines
16 KiB
TeX
\section{Reactions}
|
|
|
|
\subsection{Types of reactions}
|
|
|
|
\subsubsection{Combination reaction (Synthesis reaction)}
|
|
|
|
\textbf{Definition:} Two or more substances combine to form a single product.
|
|
|
|
\textbf{General form:} \ce{A + B -> AB}
|
|
|
|
\textbf{Examples:}
|
|
\begin{itemize}
|
|
\item Formation of water: \ce{2H2 + O2 -> 2H2O}
|
|
\item Formation of ammonia: \ce{N2 + 3H2 -> 2NH3}
|
|
\item Metal oxide formation: \ce{2Mg + O2 -> 2MgO}
|
|
\item Salt formation: \ce{2Na + Cl2 -> 2NaCl}
|
|
\end{itemize}
|
|
|
|
\subsubsection{Decomposition reaction}
|
|
|
|
\textbf{Definition:} A single compound breaks down into two or more simpler substances.
|
|
|
|
\textbf{General form:} \ce{AB -> A + B}
|
|
|
|
\textbf{Examples:}
|
|
\begin{itemize}
|
|
\item Thermal decomposition of calcium carbonate: \ce{CaCO3 ->[heat] CaO + CO2 ^}
|
|
\item Electrolysis of water: \ce{2H2O ->[electrolysis] 2H2 ^ + O2 ^}
|
|
\item Decomposition of hydrogen peroxide: \ce{2H2O2 ->[MnO2] 2H2O + O2 ^}
|
|
\item Decomposition of potassium chlorate: \ce{2KClO3 ->[heat] 2KCl + 3O2 ^}
|
|
\end{itemize}
|
|
|
|
\subsubsection{Displacement reaction (Substitution reaction)}
|
|
|
|
\textbf{Definition:} One element replaces another element in a compound.
|
|
|
|
\textbf{General form:} \ce{A + BC -> AC + B}
|
|
|
|
\textbf{Examples:}
|
|
\begin{itemize}
|
|
\item Zinc displacing hydrogen: \ce{Zn + 2HCl -> ZnCl2 + H2 ^}
|
|
\item Chlorine displacing bromine: \ce{Cl2 + 2NaBr -> 2NaCl + Br2}
|
|
\item Magnesium displacing copper: \ce{Mg + CuSO4 -> MgSO4 + Cu}
|
|
\item Iron displacing copper: \ce{Fe + CuSO4 -> FeSO4 + Cu}
|
|
\end{itemize}
|
|
|
|
\subsubsection{Double displacement reaction (Metathesis reaction)}
|
|
|
|
\textbf{Definition:} Exchange of ions between two compounds.
|
|
|
|
\textbf{General form:} \ce{AB + CD -> AD + CB}
|
|
|
|
\textbf{Examples:}
|
|
\begin{itemize}
|
|
\item Precipitation: \ce{AgNO3 + NaCl -> AgCl v + NaNO3}
|
|
\item Neutralization: \ce{HCl + NaOH -> NaCl + H2O}
|
|
\item Formation of barium sulfate: \ce{BaCl2 + H2SO4 -> BaSO4 v + 2HCl}
|
|
\end{itemize}
|
|
|
|
\subsubsection{Redox reaction (Oxidation-reduction reaction)}
|
|
|
|
\textbf{Definition:} Transfer of electrons between species, involving change in oxidation states.
|
|
|
|
\textbf{Oxidation:} Loss of electrons, increase in oxidation number.
|
|
|
|
\textbf{Reduction:} Gain of electrons, decrease in oxidation number.
|
|
|
|
\textbf{Examples:}
|
|
\begin{itemize}
|
|
\item Combustion: \ce{C + O2 -> CO2}
|
|
\item Permanganate oxidation: \ce{2KMnO4 + 5H2C2O4 + 3H2SO4 -> K2SO4 + 2MnSO4 + 10CO2 ^ + 8H2O}
|
|
\item Dichromate oxidation: \ce{K2Cr2O7 + 14HCl -> 2KCl + 2CrCl3 + 3Cl2 ^ + 7H2O}
|
|
\item Zinc-copper cell: \ce{Zn + Cu^2+ -> Zn^2+ + Cu}
|
|
\end{itemize}
|
|
|
|
\subsubsection{Acid-base reaction (Neutralization)}
|
|
|
|
\textbf{Definition:} Reaction between an acid and a base to produce salt and water.
|
|
|
|
\textbf{General form:} \ce{Acid + Base -> Salt + Water}
|
|
|
|
\textbf{Examples:}
|
|
\begin{itemize}
|
|
\item Strong acid-strong base: \ce{HCl + NaOH -> NaCl + H2O}
|
|
\item Weak acid-strong base: \ce{CH3COOH + NaOH -> CH3COONa + H2O}
|
|
\item Dibasic acid: \ce{H2SO4 + 2KOH -> K2SO4 + 2H2O}
|
|
\item Carbonate with acid: \ce{Na2CO3 + 2HCl -> 2NaCl + H2O + CO2 ^}
|
|
\end{itemize}
|
|
|
|
\subsubsection{Precipitation reaction}
|
|
|
|
\textbf{Definition:} Formation of an insoluble solid (precipitate) from aqueous solutions.
|
|
|
|
\textbf{Examples:}
|
|
\begin{itemize}
|
|
\item Silver chloride: \ce{Ag+ + Cl- -> AgCl v} (white precipitate)
|
|
\item Lead iodide: \ce{Pb^2+ + 2I- -> PbI2 v} (yellow precipitate)
|
|
\item Iron(III) hydroxide: \ce{Fe^3+ + 3OH- -> Fe(OH)3 v} (brown precipitate)
|
|
\item Copper(II) hydroxide: \ce{Cu^2+ + 2OH- -> Cu(OH)2 v} (blue precipitate)
|
|
\end{itemize}
|
|
|
|
\subsection{Organic reactions}
|
|
|
|
\subsubsection{Halogenation reaction}
|
|
|
|
\textbf{Definition:} Introduction of halogen atoms (F, Cl, Br, I) into organic molecules.
|
|
|
|
\textbf{Free radical halogenation (alkanes):}
|
|
\begin{itemize}
|
|
\item Chlorination of methane: \ce{CH4 + Cl2 ->[UV light] CH3Cl + HCl}
|
|
\item Further substitution: \ce{CH3Cl + Cl2 -> CH2Cl2 + HCl}
|
|
\item Bromination of ethane: \ce{C2H6 + Br2 ->[UV light] C2H5Br + HBr}
|
|
\end{itemize}
|
|
|
|
\textbf{Electrophilic halogenation (aromatic):}
|
|
\begin{itemize}
|
|
\item Bromination of benzene: \ce{C6H6 + Br2 ->[FeBr3] C6H5Br + HBr}
|
|
\item Chlorination of benzene: \ce{C6H6 + Cl2 ->[AlCl3] C6H5Cl + HCl}
|
|
\item Iodination of benzene: \ce{C6H6 + I2 ->[HNO3] C6H5I + HI}
|
|
\end{itemize}
|
|
|
|
\textbf{Addition halogenation (alkenes):}
|
|
\begin{itemize}
|
|
\item Bromination of ethene: \ce{C2H4 + Br2 -> C2H4Br2}
|
|
\item Test for unsaturation: Decolorization of bromine water
|
|
\item Chlorination of propene: \ce{C3H6 + Cl2 -> C3H6Cl2}
|
|
\end{itemize}
|
|
|
|
\subsubsection{Nucleophilic substitution}
|
|
|
|
\textbf{Definition:} Replacement of a leaving group by a nucleophile.
|
|
|
|
\textbf{S$_{\mathbf{N}}$1 mechanism (unimolecular):}
|
|
\begin{itemize}
|
|
\item Two-step process via carbocation intermediate
|
|
\item Rate depends only on substrate concentration
|
|
\item Favored by tertiary halides and polar solvents
|
|
\item Example: \ce{(CH3)3CBr + H2O -> (CH3)3COH + HBr}
|
|
\end{itemize}
|
|
|
|
\textbf{S$_{\mathbf{N}}$2 mechanism (bimolecular):}
|
|
\begin{itemize}
|
|
\item One-step process with backside attack
|
|
\item Rate depends on both substrate and nucleophile concentration
|
|
\item Favored by primary halides and aprotic solvents
|
|
\item Inversion of configuration (Walden inversion)
|
|
\item Example: \ce{CH3Br + OH- -> CH3OH + Br-}
|
|
\end{itemize}
|
|
|
|
\textbf{Common nucleophiles:}
|
|
\begin{itemize}
|
|
\item Hydroxide (OH$^-$): Forms alcohols
|
|
\item Alkoxide (RO$^-$): Forms ethers
|
|
\item Cyanide (CN$^-$): Forms nitriles
|
|
\item Ammonia (NH$_3$): Forms amines
|
|
\item Water (H$_2$O): Forms alcohols (weak nucleophile)
|
|
\end{itemize}
|
|
|
|
\subsubsection{Nucleophilic addition}
|
|
|
|
\textbf{Definition:} Addition of a nucleophile to a carbonyl group.
|
|
|
|
\textbf{Examples:}
|
|
\begin{itemize}
|
|
\item Cyanohydrin formation: \ce{CH3CHO + HCN -> CH3CH(OH)CN}
|
|
\item Grignard addition: \ce{CH3MgBr + CH2O -> CH3CH2OH} (after hydrolysis)
|
|
\item Bisulfite addition: \ce{RCHO + NaHSO3 -> RCH(OH)SO3Na}
|
|
\end{itemize}
|
|
|
|
\subsubsection{Electrophilic addition}
|
|
|
|
\textbf{Definition:} Addition of an electrophile to a multiple bond.
|
|
|
|
\textbf{Examples:}
|
|
\begin{itemize}
|
|
\item Hydrohalogenation: \ce{C2H4 + HBr -> C2H5Br}
|
|
\item Markovnikov's rule: H adds to carbon with more H atoms
|
|
\item Hydration: \ce{C2H4 + H2O ->[H+] C2H5OH}
|
|
\item Addition of sulfuric acid: \ce{C2H4 + H2SO4 -> C2H5OSO3H}
|
|
\end{itemize}
|
|
|
|
\subsubsection{Elimination reaction}
|
|
|
|
\textbf{Definition:} Removal of atoms or groups to form multiple bonds.
|
|
|
|
\textbf{Dehydrohalogenation (E1 and E2):}
|
|
\begin{itemize}
|
|
\item E2 mechanism: \ce{C2H5Br + KOH ->[alcohol, heat] C2H4 ^ + KBr + H2O}
|
|
\item Zaitsev's rule: Major product is more substituted alkene
|
|
\item E1 mechanism: Two-step via carbocation
|
|
\end{itemize}
|
|
|
|
\textbf{Dehydration of alcohols:}
|
|
\begin{itemize}
|
|
\item Ethanol dehydration: \ce{C2H5OH ->[H2SO4, heat] C2H4 ^ + H2O}
|
|
\item Intramolecular (forms alkene) vs intermolecular (forms ether)
|
|
\end{itemize}
|
|
|
|
\subsubsection{Oxidation reactions}
|
|
|
|
\textbf{Oxidation of alcohols:}
|
|
\begin{itemize}
|
|
\item Primary to aldehyde: \ce{RCH2OH ->[oxidation] RCHO ->[oxidation] RCOOH}
|
|
\item Secondary to ketone: \ce{R2CHOH ->[oxidation] R2CO}
|
|
\item Tertiary alcohols: Resistant to oxidation
|
|
\item Oxidizing agents: \ce{K2Cr2O7/H2SO4}, \ce{KMnO4}, \ce{CrO3}
|
|
\end{itemize}
|
|
|
|
\textbf{Oxidation of aldehydes:}
|
|
\begin{itemize}
|
|
\item To carboxylic acid: \ce{RCHO ->[oxidation] RCOOH}
|
|
\item Mild oxidizing agents work (e.g., Tollens' reagent, Fehling's reagent)
|
|
\end{itemize}
|
|
|
|
\subsubsection{Reduction reactions}
|
|
|
|
\textbf{Reduction of carbonyl compounds:}
|
|
\begin{itemize}
|
|
\item Aldehyde to primary alcohol: \ce{RCHO ->[reduction] RCH2OH}
|
|
\item Ketone to secondary alcohol: \ce{R2CO ->[reduction] R2CHOH}
|
|
\item Reducing agents: \ce{LiAlH4}, \ce{NaBH4}, \ce{H2/Pt}
|
|
\end{itemize}
|
|
|
|
\textbf{Reduction of carboxylic acids:}
|
|
\begin{itemize}
|
|
\item To primary alcohol: \ce{RCOOH ->[LiAlH4] RCH2OH}
|
|
\item Requires strong reducing agent
|
|
\end{itemize}
|
|
|
|
\subsubsection{Condensation reactions}
|
|
|
|
\textbf{Definition:} Combination of molecules with elimination of small molecule (usually water).
|
|
|
|
\textbf{Esterification:}
|
|
\begin{itemize}
|
|
\item Fischer esterification: \ce{RCOOH + R-OH <=>[H+] RCOOR + H2O}
|
|
\item Reversible reaction, equilibrium can be shifted
|
|
\end{itemize}
|
|
|
|
\textbf{Aldol condensation:}
|
|
\begin{itemize}
|
|
\item Self-condensation of aldehydes: \ce{2CH3CHO ->[OH-] CH3CH(OH)CH2CHO}
|
|
\item Followed by dehydration: \ce{CH3CH(OH)CH2CHO -> CH3CH=CHCHO + H2O}
|
|
\end{itemize}
|
|
|
|
\subsubsection{Hydrolysis reactions}
|
|
|
|
\textbf{Ester hydrolysis:}
|
|
\begin{itemize}
|
|
\item Acidic: \ce{RCOOR + H2O <=>[H+] RCOOH + R-OH}
|
|
\item Basic (saponification): \ce{RCOOR + NaOH -> RCOONa + R-OH}
|
|
\end{itemize}
|
|
|
|
\textbf{Amide hydrolysis:}
|
|
\begin{itemize}
|
|
\item Acidic: \ce{RCONH2 + H2O + HCl ->[heat] RCOOH + NH4Cl}
|
|
\item Basic: \ce{RCONH2 + NaOH ->[heat] RCOONa + NH3 ^}
|
|
\end{itemize}
|
|
|
|
\subsection{Named reactions and tests}
|
|
|
|
\subsubsection{Silver mirror reaction (Tollens' test)}
|
|
|
|
\textbf{Purpose:} Test for aldehydes; distinguishes aldehydes from ketones.
|
|
|
|
\textbf{Reagent:} Tollens' reagent - ammoniacal silver nitrate solution \ce{[Ag(NH3)2]+}
|
|
|
|
\textbf{Principle:} Aldehydes are oxidized to carboxylic acids while silver ions are reduced to metallic silver, forming a silver mirror on the test tube.
|
|
|
|
\textbf{Preparation of reagent:}
|
|
\begin{itemize}
|
|
\item \ce{AgNO3 + NaOH -> AgOH v + NaNO3}
|
|
\item \ce{AgOH + 2NH3 -> [Ag(NH3)2]OH} (soluble complex)
|
|
\end{itemize}
|
|
|
|
\textbf{Reaction with aldehyde:}
|
|
\begin{itemize}
|
|
\item \ce{RCHO + 2[Ag(NH3)2]+ + 2OH- -> RCOO- + 2Ag v + 4NH3 + H2O}
|
|
\item Formaldehyde: \ce{HCHO + 4[Ag(NH3)2]+ + 4OH- -> CO3^2- + 4Ag v + 8NH3 + 2H2O}
|
|
\item Glucose (reducing sugar): \ce{C6H12O6 + 2[Ag(NH3)2]+ + 2OH- -> C6H12O7 + 2Ag v + 4NH3}
|
|
\end{itemize}
|
|
|
|
\textbf{Observation:} Silver mirror forms on the inner surface of the test tube (positive test).
|
|
|
|
\textbf{Note:} Ketones do not give this reaction. Some $\alpha$-hydroxy ketones may give weakly positive results.
|
|
|
|
\subsubsection{Fehling's test (Benedict's test)}
|
|
|
|
\textbf{Purpose:} Test for reducing sugars and aldehydes.
|
|
|
|
\textbf{Reagent:} Fehling's solution (mixture of Fehling's A and B)
|
|
\begin{itemize}
|
|
\item Fehling's A: Copper(II) sulfate solution \ce{CuSO4}
|
|
\item Fehling's B: Alkaline sodium potassium tartrate solution (Rochelle salt)
|
|
\end{itemize}
|
|
|
|
\textbf{Principle:} Aldehydes reduce Cu$^{2+}$ (blue) to Cu$_2$O (red-brown precipitate).
|
|
|
|
\textbf{Reaction:}
|
|
\begin{itemize}
|
|
\item \ce{RCHO + 2Cu^2+ + 5OH- ->[heat] RCOO- + Cu2O v + 3H2O}
|
|
\item With glucose: \ce{C6H12O6 + 2Cu^2+ + 5OH- -> C6H12O7 + Cu2O v + 3H2O}
|
|
\end{itemize}
|
|
|
|
\textbf{Observation:} Blue solution turns to red-brown precipitate of cuprous oxide.
|
|
|
|
\textbf{Benedict's reagent:} Similar test using copper citrate complex instead of tartrate.
|
|
|
|
\subsubsection{Iodine clock reaction}
|
|
|
|
\textbf{Purpose:} Demonstration of reaction kinetics and reaction mechanisms.
|
|
|
|
\textbf{Principle:} A sudden color change occurs after a predictable time period, demonstrating the relationship between reaction rate and concentration.
|
|
|
|
\textbf{Common version (Landolt reaction):}
|
|
\begin{itemize}
|
|
\item Reaction A (slow): \ce{H2O2 + 2I- + 2H+ -> I2 + 2H2O}
|
|
\item Reaction B (fast): \ce{I2 + 2S2O3^2- -> 2I- + S4O6^2-}
|
|
\item When thiosulfate is consumed, free iodine reacts with starch indicator
|
|
\item \ce{I2 + starch -> blue complex}
|
|
\end{itemize}
|
|
|
|
\textbf{Alternative version (Dushman reaction):}
|
|
\begin{itemize}
|
|
\item \ce{IO3- + 3HSO3- -> I- + 3SO4^2- + 3H+} (slow)
|
|
\item \ce{IO3- + 5I- + 6H+ -> 3I2 + 3H2O} (fast, when HSO$_3^-$ depleted)
|
|
\end{itemize}
|
|
|
|
\textbf{Observation:} Solution remains colorless for a fixed time, then suddenly turns deep blue.
|
|
|
|
\textbf{Variables affecting clock time:}
|
|
\begin{itemize}
|
|
\item Concentration of reactants
|
|
\item Temperature
|
|
\item Presence of catalysts
|
|
\end{itemize}
|
|
|
|
\subsubsection{Biuret test}
|
|
|
|
\textbf{Purpose:} Test for proteins and peptide bonds; detects presence of peptide linkages.
|
|
|
|
\textbf{Reagent:} Biuret reagent (copper sulfate in alkaline solution)
|
|
\begin{itemize}
|
|
\item \ce{CuSO4} in dilute \ce{NaOH} solution
|
|
\end{itemize}
|
|
|
|
\textbf{Principle:} Peptide bonds form a colored complex with Cu$^{2+}$ ions in alkaline solution.
|
|
|
|
\textbf{Reaction:} Copper ions coordinate with nitrogen atoms of peptide bonds, forming a violet-purple complex.
|
|
|
|
\textbf{Named after:} Biuret \ce{H2N-CO-NH-CO-NH2}, the simplest compound that gives this test.
|
|
|
|
\textbf{Observation:}
|
|
\begin{itemize}
|
|
\item Negative (no protein): Blue color (from Cu$^{2+}$ ions)
|
|
\item Positive (protein present): Violet to purple color
|
|
\item Intensity depends on number of peptide bonds
|
|
\end{itemize}
|
|
|
|
\textbf{Requirements:}
|
|
\begin{itemize}
|
|
\item At least two peptide bonds required for positive test
|
|
\item Single amino acids do not give positive result
|
|
\item Dipeptides give weak positive result
|
|
\item Tripeptides and proteins give strong positive result
|
|
\end{itemize}
|
|
|
|
\textbf{Application:}
|
|
\begin{itemize}
|
|
\item Qualitative test for proteins
|
|
\item Semi-quantitative determination of protein concentration
|
|
\item Used in biochemistry and food analysis
|
|
\end{itemize}
|
|
|
|
\subsubsection{Lucas test}
|
|
|
|
\textbf{Purpose:} Distinguish between primary, secondary, and tertiary alcohols.
|
|
|
|
\textbf{Reagent:} Lucas reagent (anhydrous \ce{ZnCl2} in concentrated \ce{HCl})
|
|
|
|
\textbf{Principle:} Alcohols react with HCl in presence of \ce{ZnCl2} to form alkyl chlorides (insoluble, appears as cloudiness).
|
|
|
|
\textbf{Reactions:}
|
|
\begin{itemize}
|
|
\item \ce{ROH + HCl ->[ZnCl2] RCl + H2O}
|
|
\item Rate: Tertiary > Secondary > Primary
|
|
\end{itemize}
|
|
|
|
\textbf{Observations:}
|
|
\begin{itemize}
|
|
\item Tertiary alcohol: Immediate cloudiness (turbidity)
|
|
\item Secondary alcohol: Cloudiness within 5-10 minutes
|
|
\item Primary alcohol: No reaction at room temperature
|
|
\end{itemize}
|
|
|
|
\subsubsection{Diazotization reaction}
|
|
|
|
\textbf{Purpose:} Formation of diazonium salts from primary aromatic amines.
|
|
|
|
\textbf{Reagent:} Sodium nitrite (\ce{NaNO2}) and dilute \ce{HCl} at 0-5$^\circ$C
|
|
|
|
\textbf{Reaction:}
|
|
\begin{itemize}
|
|
\item \ce{C6H5NH2 + NaNO2 + 2HCl ->[cold] C6H5N2+Cl- + NaCl + 2H2O}
|
|
\item Temperature must be kept low to prevent decomposition
|
|
\end{itemize}
|
|
|
|
\textbf{Applications:}
|
|
\begin{itemize}
|
|
\item Azo dye synthesis (coupling with phenols or aromatic amines)
|
|
\item Sandmeyer reaction (replacement of diazonium group)
|
|
\item Gattermann reaction
|
|
\end{itemize}
|
|
|
|
\subsubsection{Friedel-Crafts reactions}
|
|
|
|
\textbf{Friedel-Crafts alkylation:}
|
|
\begin{itemize}
|
|
\item \ce{C6H6 + RCl ->[AlCl3] C6H5R + HCl}
|
|
\item Introduces alkyl group onto aromatic ring
|
|
\item Catalyst: \ce{AlCl3} or \ce{FeCl3}
|
|
\item Problem: Polyalkylation and rearrangement
|
|
\end{itemize}
|
|
|
|
\textbf{Friedel-Crafts acylation:}
|
|
\begin{itemize}
|
|
\item \ce{C6H6 + RCOCl ->[AlCl3] C6H5COR + HCl}
|
|
\item Introduces acyl group onto aromatic ring
|
|
\item More controlled than alkylation (no polyacylation)
|
|
\item Forms ketones
|
|
\end{itemize}
|
|
|
|
\subsubsection{Kolbe's reaction (Kolbe-Schmitt reaction)}
|
|
|
|
\textbf{Purpose:} Synthesis of salicylic acid from phenol.
|
|
|
|
\textbf{Reaction:}
|
|
\begin{itemize}
|
|
\item \ce{C6H5OH + NaOH -> C6H5ONa + H2O}
|
|
\item \ce{C6H5ONa + CO2 ->[heat, pressure] C6H4(OH)COONa} (sodium salicylate)
|
|
\item \ce{C6H4(OH)COONa + HCl -> C6H4(OH)COOH + NaCl} (salicylic acid)
|
|
\end{itemize}
|
|
|
|
\textbf{Conditions:} High pressure (5-7 atm), 125-130$^\circ$C
|
|
|
|
\textbf{Application:} Industrial production of aspirin (acetylsalicylic acid)
|
|
|
|
\subsubsection{Cannizzaro reaction}
|
|
|
|
\textbf{Purpose:} Disproportionation of aldehydes lacking $\alpha$-hydrogen.
|
|
|
|
\textbf{Principle:} In strong base, one aldehyde molecule is oxidized to carboxylate, another is reduced to alcohol.
|
|
|
|
\textbf{Reaction:}
|
|
\begin{itemize}
|
|
\item \ce{2RCHO + NaOH ->[no alpha-H] RCOONa + RCH2OH}
|
|
\item Example: \ce{2C6H5CHO + NaOH -> C6H5COONa + C6H5CH2OH}
|
|
\item Formaldehyde: \ce{2HCHO + NaOH -> HCOONa + CH3OH}
|
|
\end{itemize}
|
|
|
|
\textbf{Requirement:} Aldehyde must lack $\alpha$-hydrogen atoms.
|
|
|
|
\subsubsection{Haloform reaction}
|
|
|
|
\textbf{Purpose:} Test for methyl ketones; produces haloform.
|
|
|
|
\textbf{Reagent:} Halogen (\ce{I2}, \ce{Br2}, or \ce{Cl2}) in alkaline solution
|
|
|
|
\textbf{Reaction:}
|
|
\begin{itemize}
|
|
\item \ce{CH3COR + 3I2 + 4NaOH -> RCOONa + CHI3 v + 3NaI + 3H2O}
|
|
\item Iodoform (\ce{CHI3}): Yellow precipitate with characteristic odor
|
|
\end{itemize}
|
|
|
|
\textbf{Positive test:}
|
|
\begin{itemize}
|
|
\item Methyl ketones: \ce{R-CO-CH3}
|
|
\item Acetaldehyde: \ce{CH3CHO}
|
|
\item Ethanol: \ce{CH3CH2OH} (oxidized to acetaldehyde first)
|
|
\end{itemize}
|
|
|
|
\textbf{Iodoform test:} Specific for compounds with \ce{CH3CO-} or \ce{CH3CH(OH)-} structure.
|