Files
chemistry-english-note/main.tex

1535 lines
49 KiB
TeX

\documentclass[10pt,a4paper]{extarticle}
% Package imports
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{chemfig}
\usepackage[version=4]{mhchem}
\usepackage{graphicx}
\usepackage{geometry}
\usepackage{hyperref}
\usepackage{booktabs}
\usepackage{longtable}
\usepackage{array}
\usepackage{float}
% Page layout
\geometry{
margin=1in
}
% Document information
\title{Chemistry Vocabulary}
\author{}
\date{}
\setlength{\parindent}{0pt}
\begin{document}
\maketitle
\section*{Introduction}
\section{Elements and elementary substances}
\subsection{Alkali metals}
\subsubsection{Elements}
\begin{table}[H]
\centering
\begin{tabular}{ccccc}
\toprule
Atomic No. & Symbol & English Name & Latin Name & Rel. Atomic Mass \\
\midrule
3 & Li & Lithium & Lithium & 6.94 \\
11 & Na & Sodium & Natrium & 22.99 \\
19 & K & Potassium & Kalium & 39.10 \\
37 & Rb & Rubidium & Rubidium & 85.47 \\
55 & Cs & Cesium & Caesium & 132.91 \\
87 & Fr & Francium & Francium & (223) \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Elementary Substances}
\begin{table}[H]
\centering
\small
\begin{tabular}{p{1.5cm}p{1.8cm}p{1.8cm}p{2.5cm}p{4cm}}
\toprule
Element & M.P. ($^\circ$C) & B.P. ($^\circ$C) & Crystal Structure & Application/Source \\
\midrule
Li & 180.5 & 1342 & BCC & Batteries, alloys \\
Na & 97.7 & 883 & BCC & Reducing agent, coolant \\
K & 63.5 & 759 & BCC & Fertilizer, gun powder \\
Rb & 39.3 & 688 & BCC & Photoelectric cells \\
Cs & 28.4 & 671 & BCC & Atomic clocks \\
Fr & 27 & 677 & --- & Radioactive, no use \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Preparation Methods}
\textbf{Sodium (Na):} Electrolysis of molten NaCl: \ce{2NaCl ->[electrolysis] 2Na + Cl2 ^}
\textbf{Potassium (K):} Reduction of KCl with Na at high temperature: \ce{KCl + Na ->[high T] K ^ + NaCl}
\subsection{Alkaline earth metals}
\subsubsection{Elements}
\begin{table}[H]
\centering
\begin{tabular}{ccccc}
\toprule
Atomic No. & Symbol & English Name & Latin Name & Rel. Atomic Mass \\
\midrule
4 & Be & Beryllium & Beryllium & 9.01 \\
12 & Mg & Magnesium & Magnesium & 24.31 \\
20 & Ca & Calcium & Calcium & 40.08 \\
38 & Sr & Strontium & Strontium & 87.62 \\
56 & Ba & Barium & Barium & 137.33 \\
88 & Ra & Radium & Radium & (226) \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Elementary Substances}
\begin{table}[H]
\centering
\small
\begin{tabular}{p{1.5cm}p{1.8cm}p{1.8cm}p{2.5cm}p{4cm}}
\toprule
Element & M.P. ($^\circ$C) & B.P. ($^\circ$C) & Crystal Structure & Application/Source \\
\midrule
Be & 1287 & 2470 & HCP & Alloys, X-ray windows \\
Mg & 650 & 1090 & HCP & Alloys, fireworks \\
Ca & 842 & 1484 & FCC & Reducing agent, cement \\
Sr & 777 & 1382 & FCC & Fireworks (red) \\
Ba & 727 & 1897 & BCC & Drilling fluids \\
Ra & 700 & 1737 & BCC & Radioactive, obsolete \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Preparation Methods}
\textbf{Magnesium (Mg):} Electrolysis of molten MgCl$_2$: \ce{MgCl2 ->[electrolysis] Mg + Cl2 ^}
Alternatively, reduction of MgO with coke: \ce{MgO + C ->[high T] Mg ^ + CO ^}
\textbf{Calcium (Ca):} Electrolysis of molten CaCl$_2$ or reduction of CaO with Al
\subsection{Transition metals}
\subsubsection{Elements (First Row)}
\begin{table}[H]
\centering
\small
\begin{tabular}{ccccc}
\toprule
Atomic No. & Symbol & English Name & Latin Name & Rel. Atomic Mass \\
\midrule
21 & Sc & Scandium & Scandium & 44.96 \\
22 & Ti & Titanium & Titanium & 47.87 \\
23 & V & Vanadium & Vanadium & 50.94 \\
24 & Cr & Chromium & Chromium & 52.00 \\
25 & Mn & Manganese & Manganese & 54.94 \\
26 & Fe & Iron & Ferrum & 55.85 \\
27 & Co & Cobalt & Cobaltum & 58.93 \\
28 & Ni & Nickel & Niccolum & 58.69 \\
29 & Cu & Copper & Cuprum & 63.55 \\
30 & Zn & Zinc & Zincum & 65.38 \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Important Elements (Other Rows)}
\begin{table}[H]
\centering
\begin{tabular}{ccccc}
\toprule
Atomic No. & Symbol & English Name & Latin Name & Rel. Atomic Mass \\
\midrule
47 & Ag & Silver & Argentum & 107.87 \\
48 & Cd & Cadmium & Cadmium & 112.41 \\
74 & W & Tungsten & Wolframium & 183.84 \\
78 & Pt & Platinum & Platinum & 195.08 \\
79 & Au & Gold & Aurum & 196.97 \\
80 & Hg & Mercury & Hydrargyrum & 200.59 \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Elementary Substances}
\begin{longtable}{p{1.3cm}p{1.6cm}p{1.6cm}p{2.2cm}p{4.5cm}}
\toprule
Element & M.P. ($^\circ$C) & B.P. ($^\circ$C) & Crystal Structure & Application/Source \\
\midrule
\endfirsthead
\toprule
Element & M.P. ($^\circ$C) & B.P. ($^\circ$C) & Crystal Structure & Application/Source \\
\midrule
\endhead
Ti & 1668 & 3287 & HCP & Aerospace alloys, pigments \\
V & 1910 & 3407 & BCC & Steel alloys, catalysts \\
Cr & 1907 & 2671 & BCC & Stainless steel, plating \\
Mn & 1246 & 2061 & Cubic & Steel production \\
Fe & 1538 & 2862 & BCC & Construction, machinery \\
Co & 1495 & 2927 & HCP & Alloys, magnets \\
Ni & 1455 & 2913 & FCC & Alloys, catalysts, coins \\
Cu & 1085 & 2562 & FCC & Electrical wire, plumbing \\
Zn & 419.5 & 907 & HCP & Galvanization, batteries \\
Ag & 961.8 & 2162 & FCC & Jewelry, conductors \\
Cd & 321.1 & 767 & HCP & Batteries, pigments \\
W & 3422 & 5555 & BCC & Light bulb filaments \\
Pt & 1768 & 3825 & FCC & Catalysts, jewelry \\
Au & 1064 & 2856 & FCC & Jewelry, electronics \\
Hg & -38.8 & 356.7 & Rhombohedral & Thermometers, lamps \\
\bottomrule
\end{longtable}
\subsubsection{Preparation Methods}
\textbf{Iron (Fe):} Reduction in blast furnace: \ce{Fe2O3 + 3CO ->[high T] 2Fe + 3CO2}
\textbf{Copper (Cu):} Roasting sulfide ore then reduction: \ce{2Cu2S + 3O2 -> 2Cu2O + 2SO2}, then \ce{Cu2S + 2Cu2O -> 6Cu + SO2 ^}
Alternatively, leaching and electrowinning from oxide ores.
\textbf{Zinc (Zn):} Roasting then reduction with carbon: \ce{2ZnS + 3O2 -> 2ZnO + 2SO2}, then \ce{ZnO + C -> Zn + CO}
\textbf{Chromium (Cr):} Reduction of Cr$_2$O$_3$ with aluminum (thermite process): \ce{Cr2O3 + 2Al -> 2Cr + Al2O3}
\subsection{Post-transition metals}
\subsubsection{Elements}
\begin{table}[H]
\centering
\begin{tabular}{ccccc}
\toprule
Atomic No. & Symbol & English Name & Latin Name & Rel. Atomic Mass \\
\midrule
13 & Al & Aluminum & Aluminium & 26.98 \\
31 & Ga & Gallium & Gallium & 69.72 \\
49 & In & Indium & Indium & 114.82 \\
50 & Sn & Tin & Stannum & 118.71 \\
81 & Tl & Thallium & Thallium & 204.38 \\
82 & Pb & Lead & Plumbum & 207.2 \\
83 & Bi & Bismuth & Bismuthum & 208.98 \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Elementary Substances}
\begin{table}[H]
\centering
\small
\begin{tabular}{p{1.3cm}p{1.6cm}p{1.6cm}p{2.2cm}p{4.5cm}}
\toprule
Element & M.P. ($^\circ$C) & B.P. ($^\circ$C) & Crystal Structure & Application/Source \\
\midrule
Al & 660.3 & 2519 & FCC & Packaging, construction \\
Ga & 29.8 & 2204 & Orthorhombic & Semiconductors, LEDs \\
In & 156.6 & 2072 & Tetragonal & LCD screens, solders \\
Sn & 231.9 & 2602 & Tetragonal & Solder, coatings \\
Tl & 304 & 1473 & HCP & Rat poison (obsolete) \\
Pb & 327.5 & 1749 & FCC & Batteries, radiation shield \\
Bi & 271.4 & 1564 & Rhombohedral & Alloys, cosmetics \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Preparation Methods}
\textbf{Aluminum (Al):} Hall-H\'eroult process (electrolysis of Al$_2$O$_3$ dissolved in molten cryolite):
\ce{2Al2O3 ->[electrolysis] 4Al + 3O2 ^}
\textbf{Lead (Pb):} Roasting galena (PbS) then reduction: \ce{2PbS + 3O2 -> 2PbO + 2SO2}, then \ce{PbO + C -> Pb + CO}
\textbf{Tin (Sn):} Reduction of cassiterite (SnO$_2$) with carbon: \ce{SnO2 + 2C -> Sn + 2CO ^}
\subsection{Metalloids}
\subsubsection{Elements}
\begin{table}[H]
\centering
\begin{tabular}{ccccc}
\toprule
Atomic No. & Symbol & English Name & Latin Name & Rel. Atomic Mass \\
\midrule
5 & B & Boron & Borium & 10.81 \\
14 & Si & Silicon & Silicium & 28.09 \\
32 & Ge & Germanium & Germanium & 72.64 \\
33 & As & Arsenic & Arsenicum & 74.92 \\
51 & Sb & Antimony & Stibium & 121.76 \\
52 & Te & Tellurium & Tellurium & 127.60 \\
84 & Po & Polonium & Polonium & (209) \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Elementary Substances}
\begin{table}[H]
\centering
\small
\begin{tabular}{p{1.3cm}p{1.6cm}p{1.6cm}p{2.2cm}p{4.5cm}}
\toprule
Element & M.P. ($^\circ$C) & B.P. ($^\circ$C) & Crystal Structure & Application/Source \\
\midrule
B & 2075 & 4000 & Rhombohedral & Glass, detergents \\
Si & 1414 & 3265 & Diamond cubic & Semiconductors, solar cells \\
Ge & 938.3 & 2833 & Diamond cubic & Semiconductors, optics \\
As & 817 & 614 (subl.) & Rhombohedral & Alloys, pesticides \\
Sb & 630.6 & 1587 & Rhombohedral & Flame retardants, alloys \\
Te & 449.5 & 988 & Hexagonal & Alloys, solar cells \\
Po & 254 & 962 & Cubic & Radioactive, no common use \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Preparation Methods}
\textbf{Silicon (Si):} Reduction of silica (SiO$_2$) with carbon in electric furnace: \ce{SiO2 + 2C ->[high T] Si + 2CO ^}
For ultrapure silicon (semiconductors): Trichlorosilane reduction: \ce{SiHCl3 + H2 ->[high T] Si + 3HCl}
\subsection{Halogen}
\subsubsection{Elements}
\begin{table}[H]
\centering
\begin{tabular}{ccccc}
\toprule
Atomic No. & Symbol & English Name & Latin Name & Rel. Atomic Mass \\
\midrule
9 & F & Fluorine & Fluorum & 19.00 \\
17 & Cl & Chlorine & Chlorum & 35.45 \\
35 & Br & Bromine & Bromum & 79.90 \\
53 & I & Iodine & Iodum & 126.90 \\
85 & At & Astatine & Astatium & (210) \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Elementary Substances}
\begin{table}[H]
\centering
\small
\begin{tabular}{p{1.3cm}p{1.6cm}p{1.6cm}p{2.5cm}p{4cm}}
\toprule
Element & M.P. ($^\circ$C) & B.P. ($^\circ$C) & Physical State & Application/Source \\
\midrule
F$_2$ & -219.6 & -188.1 & Pale yellow gas & Toothpaste, Teflon \\
Cl$_2$ & -101.5 & -34.0 & Yellow-green gas & Disinfectant, PVC \\
Br$_2$ & -7.2 & 58.8 & Red-brown liquid & Flame retardants, dyes \\
I$_2$ & 113.7 & 184.3 & Purple-black solid & Disinfectant, photography \\
At$_2$ & 302 & 337 & Solid (radioactive) & No practical use \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Preparation Methods}
\textbf{Chlorine (Cl$_2$):} Electrolysis of brine (chlor-alkali process): \ce{2NaCl + 2H2O ->[electrolysis] Cl2 ^ + H2 ^ + 2NaOH}
Laboratory: Oxidation of HCl: \ce{MnO2 + 4HCl ->[heat] MnCl2 + Cl2 ^ + 2H2O}
\textbf{Bromine (Br$_2$):} Oxidation of bromide in seawater: \ce{2Br- + Cl2 -> Br2 + 2Cl-}
\textbf{Iodine (I$_2$):} Oxidation of iodide from brine or seaweed: \ce{2I- + Cl2 -> I2 + 2Cl-}
Or from Chile saltpeter: \ce{2NaIO3 + 5NaHSO3 -> I2 + 3NaHSO4 + 2Na2SO4 + H2O}
\textbf{Fluorine (F$_2$):} Electrolysis of KF in anhydrous HF: \ce{2HF ->[electrolysis] H2 + F2 ^}
\subsection{Noble gases}
\subsubsection{Elements}
\begin{table}[H]
\centering
\begin{tabular}{ccccc}
\toprule
Atomic No. & Symbol & English Name & Latin Name & Rel. Atomic Mass \\
\midrule
2 & He & Helium & Helium & 4.00 \\
10 & Ne & Neon & Neon & 20.18 \\
18 & Ar & Argon & Argon & 39.95 \\
36 & Kr & Krypton & Krypton & 83.80 \\
54 & Xe & Xenon & Xenon & 131.29 \\
86 & Rn & Radon & Radon & (222) \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Elementary Substances}
\begin{table}[H]
\centering
\small
\begin{tabular}{p{1.3cm}p{1.6cm}p{1.6cm}p{2.5cm}p{4cm}}
\toprule
Element & M.P. ($^\circ$C) & B.P. ($^\circ$C) & Physical State & Application/Source \\
\midrule
He & -272.2 & -268.9 & Colorless gas & Balloons, cryogenics \\
Ne & -248.6 & -246.0 & Colorless gas & Neon signs, lasers \\
Ar & -189.3 & -185.8 & Colorless gas & Welding, light bulbs \\
Kr & -157.4 & -153.2 & Colorless gas & Flash lamps, lasers \\
Xe & -111.8 & -108.1 & Colorless gas & Anesthesia, ion drives \\
Rn & -71 & -61.7 & Colorless gas & Radioactive tracer \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Preparation}
Noble gases are obtained by fractional distillation of liquid air (except He and Rn).
\textbf{Helium (He):} Extracted from natural gas wells.
\textbf{Radon (Rn):} Decay product of radium, collected from uranium/thorium ores.
\subsection{Other Nonmetals}
\subsubsection{Elements}
\begin{table}[H]
\centering
\begin{tabular}{ccccc}
\toprule
Atomic No. & Symbol & English Name & Latin Name & Rel. Atomic Mass \\
\midrule
1 & H & Hydrogen & Hydrogenium & 1.008 \\
6 & C & Carbon & Carboneum & 12.01 \\
7 & N & Nitrogen & Nitrogenium & 14.01 \\
8 & O & Oxygen & Oxygenium & 16.00 \\
15 & P & Phosphorus & Phosphorus & 30.97 \\
16 & S & Sulfur & Sulfur & 32.07 \\
34 & Se & Selenium & Selenium & 78.96 \\
\bottomrule
\end{tabular}
\end{table}
\subsubsection{Elementary Substances}
\begin{longtable}{p{1.3cm}p{1.6cm}p{1.6cm}p{2.3cm}p{4.3cm}}
\toprule
Element & M.P. ($^\circ$C) & B.P. ($^\circ$C) & Form/Structure & Application/Source \\
\midrule
\endfirsthead
\toprule
Element & M.P. ($^\circ$C) & B.P. ($^\circ$C) & Form/Structure & Application/Source \\
\midrule
\endhead
H$_2$ & -259.2 & -252.9 & Colorless gas & Fuel, ammonia synthesis \\
C (graphite) & 3825 & 4827 (subl.) & Hexagonal layers & Pencils, electrodes \\
C (diamond) & 3550 & --- & Cubic crystal & Jewelry, cutting tools \\
C (fullerene) & --- & --- & Molecular cage & Research, electronics \\
N$_2$ & -210.0 & -195.8 & Colorless gas & Fertilizers, inert atm. \\
O$_2$ & -218.8 & -183.0 & Colorless gas & Respiration, combustion \\
O$_3$ (ozone) & -192.5 & -112.0 & Blue gas & Sterilization, UV shield \\
P (white) & 44.2 & 280 & Molecular solid & Incendiaries, match \\
P (red) & 590 & 431 (subl.) & Amorphous & Safety matches \\
P (black) & --- & --- & Layered & Research \\
S (rhombic) & 115.2 & 444.6 & Orthorhombic & Sulfuric acid, vulcanize \\
S (monoclinic) & 119 & 444.6 & Monoclinic & Allotrope of sulfur \\
Se (gray) & 221 & 685 & Hexagonal & Photocells, glass \\
\bottomrule
\end{longtable}
\subsubsection{Preparation Methods}
\textbf{Hydrogen (H$_2$):}
\begin{itemize}
\item Steam reforming of methane: \ce{CH4 + H2O <=>[catalyst][high T] CO + 3H2}
\item Electrolysis of water: \ce{2H2O ->[electrolysis] 2H2 ^ + O2 ^}
\item Laboratory: Reaction of metals with acids: \ce{Zn + 2HCl -> ZnCl2 + H2 ^}
\end{itemize}
\textbf{Oxygen (O$_2$):}
\begin{itemize}
\item Fractional distillation of liquid air
\item Electrolysis of water: \ce{2H2O ->[electrolysis] 2H2 ^ + O2 ^}
\item Laboratory: Decomposition of KMnO$_4$: \ce{2KMnO4 ->[heat] K2MnO4 + MnO2 + O2 ^}
\item Or: \ce{2KClO3 ->[MnO2, heat] 2KCl + 3O2 ^}
\end{itemize}
\textbf{Nitrogen (N$_2$):} Fractional distillation of liquid air
\textbf{Chlorine (Cl$_2$):} See Halogen section
\textbf{Sulfur (S):}
\begin{itemize}
\item Frasch process: Melting underground sulfur with superheated water
\item Recovered from petroleum refining and natural gas processing
\end{itemize}
\textbf{Phosphorus (P):} Reduction of phosphate rock with coke and silica:
\ce{2Ca3(PO4)2 + 6SiO2 + 10C ->[high T] 6CaSiO3 + 10CO ^ + P4 ^}
\section{Acids and bases ions}
\subsection{Hydrogen halides}
\subsubsection{Hydrofluoric acid}
\textbf{HF} (Hydrofluoric acid, Hydrogen fluoride)
\textbf{Properties:} Weak acid in aqueous solution (unlike other hydrogen halides), can dissolve glass.
\textbf{Reactions:}
\begin{itemize}
\item Etching glass: \ce{SiO2 + 4HF -> SiF4 ^ + 2H2O}
\item With calcium: \ce{Ca + 2HF -> CaF2 + H2 ^}
\item Formation of hexafluorosilicate: \ce{SiO2 + 6HF -> H2SiF6 + 2H2O}
\end{itemize}
\subsubsection{Hydrochloric acid}
\textbf{HCl} (Hydrochloric acid, Hydrogen chloride)
\textbf{Properties:} Strong acid, colorless gas, forms white fumes in moist air.
\textbf{Reactions:}
\begin{itemize}
\item Oxidation by manganese dioxide: \ce{MnO2 + 4HCl ->[heat] MnCl2 + Cl2 ^ + 2H2O}
\item With ammonia: \ce{NH3 + HCl -> NH4Cl} (white smoke)
\item Dissolving metals: \ce{Fe + 2HCl -> FeCl2 + H2 ^}
\item With permanganate: \ce{2KMnO4 + 16HCl -> 2KCl + 2MnCl2 + 5Cl2 ^ + 8H2O}
\end{itemize}
\subsubsection{Hydrobromic acid}
\textbf{HBr} (Hydrobromic acid, Hydrogen bromide)
\textbf{Properties:} Strong acid, stronger reducing agent than HCl.
\textbf{Reactions:}
\begin{itemize}
\item Oxidation by sulfuric acid: \ce{2HBr + H2SO4 -> Br2 + SO2 + 2H2O}
\item With silver nitrate: \ce{HBr + AgNO3 -> AgBr v + HNO3} (pale yellow precipitate)
\end{itemize}
\subsubsection{Hydroiodic acid}
\textbf{HI} (Hydroiodic acid, Hydrogen iodide)
\textbf{Properties:} Strong acid, strongest reducing agent among hydrogen halides.
\textbf{Reactions:}
\begin{itemize}
\item Oxidation by sulfuric acid: \ce{8HI + H2SO4 -> 4I2 + H2S + 4H2O}
\item Reduction of Fe(III): \ce{2Fe^3+ + 2I- -> 2Fe^2+ + I2}
\item With chlorine: \ce{2HI + Cl2 -> 2HCl + I2}
\end{itemize}
\subsection{Oxyacid}
\subsubsection{Nitrogen oxyacids}
\textbf{HNO$_2$} (Nitrous acid)
\textbf{Structure:} \chemfig{H-O-N=O}
\textbf{Valence:} N is +3
\textbf{Properties:} Weak acid, unstable, exists only in solution.
\textbf{Reactions:}
\begin{itemize}
\item Decomposition: \ce{3HNO2 -> HNO3 + 2NO ^ + H2O}
\item Oxidation of iodide: \ce{2HNO2 + 2HI -> I2 + 2NO ^ + 2H2O}
\item Reduction by reducing agents: \ce{2HNO2 + 2HI -> 2NO ^ + I2 + 2H2O}
\end{itemize}
\textbf{HNO$_3$} (Nitric acid)
\textbf{Structure:} \chemfig{H-O-[:30]N(=[2]O)(=[:-30]O)}
\textbf{Valence:} N is +5
\textbf{Properties:} Strong acid, strong oxidizing agent.
\textbf{Reactions:}
\begin{itemize}
\item With copper: \ce{3Cu + 8HNO3(dilute) -> 3Cu(NO3)2 + 2NO ^ + 4H2O}
\item Concentrated with copper: \ce{Cu + 4HNO3(conc.) -> Cu(NO3)2 + 2NO2 ^ + 2H2O}
\item Nitration reaction: \ce{C6H6 + HNO3 ->[H2SO4] C6H5NO2 + H2O}
\item With phosphorus: \ce{P4 + 20HNO3 -> 4H3PO4 + 20NO2 ^ + 4H2O}
\item Passivation of iron: \ce{Fe + 6HNO3(conc.) -> Fe^3+ (passive layer)}
\end{itemize}
\subsubsection{Sulfur oxyacids}
\textbf{H$_2$SO$_3$} (Sulfurous acid)
\textbf{Structure:} \chemfig{HO-[:30]S(=[2]O)(-[:-30]OH)}
\textbf{Valence:} S is +4
\textbf{Properties:} Weak acid, exists only in solution, reducing agent.
\textbf{Reactions:}
\begin{itemize}
\item Oxidation by oxygen: \ce{2H2SO3 + O2 -> 2H2SO4}
\item Reduction by hydrogen sulfide: \ce{H2SO3 + 2H2S -> 3S v + 3H2O}
\item With bromine: \ce{H2SO3 + Br2 + H2O -> H2SO4 + 2HBr}
\end{itemize}
\textbf{H$_2$SO$_4$} (Sulfuric acid)
\textbf{Structure:} \chemfig{S(=[2]O)(=[:200]O)(<[:300]OH)(<:[:-20]OH)}
\textbf{Valence:} S is +6
\textbf{Properties:} Strong acid, strong dehydrating agent, strong oxidizing agent (concentrated).
\textbf{Reactions:}
\begin{itemize}
\item With carbon (dehydration): \ce{C12H22O11 ->[H2SO4(conc.)] 12C + 11H2O}
\item Hot concentrated with copper: \ce{Cu + 2H2SO4(conc.) ->[heat] CuSO4 + SO2 ^ + 2H2O}
\item With NaCl (making HCl): \ce{NaCl + H2SO4 ->[heat] NaHSO4 + HCl ^}
\item Esterification: \ce{CH3COOH + C2H5OH <=>[H2SO4] CH3COOC2H5 + H2O}
\end{itemize}
\subsubsection{Phosphorus oxyacids}
\textbf{H$_3$PO$_3$} (Phosphorous acid)
\textbf{Structure:} \chemfig{H-[:30]P(=[2]O)(<[:300]OH)(<:[:-20]OH)}
\textbf{Valence:} P is +3
\textbf{Properties:} Dibasic acid (only 2 acidic H), reducing agent.
\textbf{Reactions:}
\begin{itemize}
\item Reduction of silver nitrate: \ce{H3PO3 + 2AgNO3 + H2O -> H3PO4 + 2Ag v + 2HNO3}
\item Disproportionation: \ce{4H3PO3 ->[heat] 3H3PO4 + PH3 ^}
\end{itemize}
\textbf{H$_3$PO$_4$} (Phosphoric acid)
\textbf{Structure:} \chemfig{HO-[:30]P(=[2]O)(<[:300]OH)(<:[:-20]OH)}
\textbf{Valence:} P is +5
\textbf{Properties:} Weak tribasic acid, non-oxidizing.
\textbf{Reactions:}
\begin{itemize}
\item Dehydration to pyrophosphoric acid: \ce{2H3PO4 ->[heat] H4P2O7 + H2O}
\item With ammonia: \ce{H3PO4 + NH3 -> NH4H2PO4}
\item Esterification: \ce{H3PO4 + 3C2H5OH -> (C2H5O)3PO + 3H2O}
\end{itemize}
\subsubsection{Chlorine oxyacids}
\textbf{HClO} (Hypochlorous acid)
\textbf{Structure:} \chemfig{H-O-Cl}
\textbf{Valence:} Cl is +1
\textbf{Properties:} Very weak acid, strong oxidizing agent, unstable.
\textbf{Reactions:}
\begin{itemize}
\item Disproportionation: \ce{3HClO -> HClO3 + 2HCl}
\item Oxidation: \ce{HClO + H2S -> HCl + S v + H2O}
\item Bleaching: \ce{HClO + [dye] -> [oxidized dye] (colorless)}
\end{itemize}
\textbf{HClO$_2$} (Chlorous acid)
\textbf{Structure:} \chemfig{H-O-[:30]Cl(=[2]O)}
\textbf{Valence:} Cl is +3
\textbf{Properties:} Weak acid, unstable, exists only in solution.
\textbf{HClO$_3$} (Chloric acid)
\textbf{Structure:} \chemfig{H-O-[:30]Cl(=[2]O)(=[:-30]O)}
\textbf{Valence:} Cl is +5
\textbf{Properties:} Strong acid, strong oxidizing agent.
\textbf{Reactions:}
\begin{itemize}
\item Oxidation of sulfur: \ce{3S + 6HClO3 -> 3H2SO4 + 3Cl2 ^}
\item Decomposition: \ce{8HClO3 -> 4Cl2 ^ + 6O2 ^ + 4H2O}
\end{itemize}
\textbf{HClO$_4$} (Perchloric acid)
\textbf{Structure:} \chemfig{HO-[:30]Cl(=[2]O)(=[:300]O)(=[:-20]O)}
\textbf{Valence:} Cl is +7
\textbf{Properties:} Very strong acid, strongest common acid, powerful oxidizing agent when hot/concentrated.
\textbf{Reactions:}
\begin{itemize}
\item Oxidation of organic compounds: \ce{C6H12O6 + 24HClO4 ->[heat] 6CO2 ^ + 12Cl2 ^ + 18H2O}
\item With metals: \ce{Mg + 2HClO4 -> Mg(ClO4)2 + H2 ^}
\end{itemize}
\subsubsection{Carbon oxyacids}
\textbf{H$_2$CO$_3$} (Carbonic acid)
\textbf{Structure:} \chemfig{HO-[:30]C(=[2]O)(-[:-30]OH)}
\textbf{Valence:} C is +4
\textbf{Properties:} Weak acid, unstable, exists in equilibrium with CO$_2$ and H$_2$O.
\textbf{Reactions:}
\begin{itemize}
\item Decomposition: \ce{H2CO3 <=> CO2 ^ + H2O}
\item With ammonia: \ce{H2CO3 + 2NH3 -> (NH4)2CO3}
\item Formation: \ce{CO2 + H2O <=> H2CO3}
\end{itemize}
\subsubsection{Bromine and iodine oxyacids}
\textbf{HBrO} (Hypobromous acid)
\textbf{Structure:} \chemfig{H-O-Br}
\textbf{Valence:} Br is +1
\textbf{HBrO$_3$} (Bromic acid)
\textbf{Structure:} \chemfig{H-O-[:30]Br(=[2]O)(-[:-30]O)}
\textbf{Valence:} Br is +5
\textbf{HIO$_3$} (Iodic acid)
\textbf{Structure:} \chemfig{H-O-[:30]I(=[2]O)(-[:-30]O)}
\textbf{Valence:} I is +5
\textbf{Reactions:}
\begin{itemize}
\item Oxidation: \ce{5HI + HIO3 -> 3I2 + 3H2O}
\item With sulfur dioxide: \ce{HIO3 + 3H2SO3 -> HI + 3H2SO4}
\end{itemize}
\textbf{H$_5$IO$_6$} (Periodic acid)
\textbf{Structure:} \chemfig{I(=[2]O)(<:[:30]OH)(<[:-30]OH)(<:[:150]OH)(<[:210]OH)(-[:270]OH)}
\textbf{Valence:} I is +7
\textbf{Reactions:}
\begin{itemize}
\item Oxidative cleavage of diols: Used to cleave vicinal diols (glycols) to aldehydes or ketones
\end{itemize}
\subsection{Bases from metal oxides}
\subsubsection{Alkali metal hydroxides}
\textbf{NaOH} (Sodium hydroxide, Caustic soda, Lye)
\textbf{Valence:} Na is +1
\textbf{Properties:} Strong base, deliquescent, corrosive.
\textbf{Reactions:}
\begin{itemize}
\item With aluminum (amphoteric): \ce{2Al + 2NaOH + 2H2O -> 2NaAlO2 + 3H2 ^}
\item With silicon dioxide: \ce{SiO2 + 2NaOH ->[heat] Na2SiO3 + H2O}
\item Saponification of esters: \ce{CH3COOC2H5 + NaOH -> CH3COONa + C2H5OH}
\item With chlorine (disproportionation): \ce{Cl2 + 2NaOH -> NaCl + NaClO + H2O}
\item With sulfur: \ce{3S + 6NaOH ->[heat] 2Na2S + Na2SO3 + 3H2O}
\end{itemize}
\textbf{KOH} (Potassium hydroxide, Caustic potash)
\textbf{Valence:} K is +1
\textbf{Properties:} Strong base, more hygroscopic than NaOH.
\textbf{Reactions:}
\begin{itemize}
\item With CO$_2$: \ce{2KOH + CO2 -> K2CO3 + H2O}
\item Excess CO$_2$: \ce{K2CO3 + CO2 + H2O -> 2KHCO3}
\item With haloalkanes (elimination): \ce{C2H5Br + KOH ->[alcohol] C2H4 ^ + KBr + H2O}
\end{itemize}
\textbf{LiOH} (Lithium hydroxide)
\textbf{Valence:} Li is +1
\textbf{Properties:} Strong base, used in CO$_2$ scrubbers.
\textbf{Reactions:}
\begin{itemize}
\item CO$_2$ absorption: \ce{2LiOH + CO2 -> Li2CO3 + H2O}
\end{itemize}
\subsubsection{Alkaline earth metal hydroxides}
\textbf{Ca(OH)$_2$} (Calcium hydroxide, Slaked lime, Hydrated lime)
\textbf{Valence:} Ca is +2
\textbf{Properties:} Moderately strong base, sparingly soluble in water (lime water).
\textbf{Reactions:}
\begin{itemize}
\item With CO$_2$ (limewater test): \ce{Ca(OH)2 + CO2 -> CaCO3 v + H2O}
\item Excess CO$_2$: \ce{CaCO3 + CO2 + H2O -> Ca(HCO3)2} (soluble)
\item With chlorine: \ce{2Ca(OH)2 + 2Cl2 -> CaCl2 + Ca(ClO)2 + 2H2O}
\item Preparation from quicklime: \ce{CaO + H2O -> Ca(OH)2} (exothermic)
\end{itemize}
\textbf{Mg(OH)$_2$} (Magnesium hydroxide, Milk of magnesia)
\textbf{Valence:} Mg is +2
\textbf{Properties:} Weak base, very sparingly soluble, antacid.
\textbf{Reactions:}
\begin{itemize}
\item Decomposition: \ce{Mg(OH)2 ->[heat] MgO + H2O}
\item With acids (antacid action): \ce{Mg(OH)2 + 2HCl -> MgCl2 + 2H2O}
\end{itemize}
\textbf{Ba(OH)$_2$} (Barium hydroxide)
\textbf{Valence:} Ba is +2
\textbf{Properties:} Strong base, more soluble than Ca(OH)$_2$.
\textbf{Reactions:}
\begin{itemize}
\item With sulfuric acid: \ce{Ba(OH)2 + H2SO4 -> BaSO4 v + 2H2O}
\item With ammonium salts (endothermic): \ce{Ba(OH)2.8H2O + 2NH4Cl -> BaCl2 + 2NH3 ^ + 10H2O}
\end{itemize}
\subsubsection{Ammonia and related bases}
\textbf{NH$_3$} (Ammonia)
\textbf{Structure:} \chemfig{N(-[:90]H)(-[:210]H)(-[:330]H)}
\textbf{Valence:} N is -3
\textbf{Properties:} Weak base, pungent gas, very soluble in water.
\textbf{Reactions:}
\begin{itemize}
\item Complex formation with Cu$^{2+}$: \ce{Cu^2+ + 4NH3 -> [Cu(NH3)4]^2+} (deep blue)
\item With HCl: \ce{NH3 + HCl -> NH4Cl} (white smoke)
\item Haber process: \ce{N2 + 3H2 <=>[Fe catalyst][high T, P] 2NH3}
\item Oxidation by oxygen: \ce{4NH3 + 5O2 ->[Pt catalyst] 4NO + 6H2O} (Ostwald process)
\item With chlorine: \ce{2NH3 + 3Cl2 -> N2 + 6HCl}
\item Reduction of CuO: \ce{3CuO + 2NH3 ->[heat] 3Cu + N2 + 3H2O}
\end{itemize}
\textbf{NH$_4$OH} (Ammonium hydroxide)
\textbf{Formula:} NH$_4^+$ and OH$^-$ ions in aqueous solution
\textbf{Valence:} N is -3
\textbf{Properties:} Aqueous ammonia solution, weak base.
\textbf{Reactions:}
\begin{itemize}
\item Precipitation of metal hydroxides: \ce{Fe^3+ + 3NH4OH -> Fe(OH)3 v + 3NH4+}
\item With excess ammonia (complex formation): \ce{Zn(OH)2 + 4NH3 -> [Zn(NH3)4]^2+ + 2OH-}
\end{itemize}
\subsubsection{Transition metal hydroxides}
\textbf{Fe(OH)$_2$} (Iron(II) hydroxide, Ferrous hydroxide)
\textbf{Valence:} Fe is +2
\textbf{Properties:} Weak base, white-green solid, easily oxidized.
\textbf{Reactions:}
\begin{itemize}
\item Oxidation: \ce{4Fe(OH)2 + O2 + 2H2O -> 4Fe(OH)3} (turns brown)
\item Decomposition: \ce{Fe(OH)2 ->[heat] FeO + H2O}
\end{itemize}
\textbf{Fe(OH)$_3$} (Iron(III) hydroxide, Ferric hydroxide)
\textbf{Valence:} Fe is +3
\textbf{Properties:} Very weak base, brown precipitate.
\textbf{Reactions:}
\begin{itemize}
\item Decomposition: \ce{2Fe(OH)3 ->[heat] Fe2O3 + 3H2O}
\end{itemize}
\textbf{Al(OH)$_3$} (Aluminum hydroxide)
\textbf{Valence:} Al is +3
\textbf{Properties:} Amphoteric, white precipitate, antacid.
\textbf{Reactions:}
\begin{itemize}
\item With acid: \ce{Al(OH)3 + 3HCl -> AlCl3 + 3H2O}
\item With base: \ce{Al(OH)3 + NaOH -> NaAlO2 + 2H2O}
\item Decomposition: \ce{2Al(OH)3 ->[heat] Al2O3 + 3H2O}
\end{itemize}
\textbf{Cu(OH)$_2$} (Copper(II) hydroxide, Cupric hydroxide)
\textbf{Valence:} Cu is +2
\textbf{Properties:} Weak base, blue precipitate.
\textbf{Reactions:}
\begin{itemize}
\item Decomposition: \ce{Cu(OH)2 ->[heat] CuO + H2O}
\item With ammonia: \ce{Cu(OH)2 + 4NH3 -> [Cu(NH3)4]^2+ + 2OH-} (deep blue solution)
\item With tartaric acid (Fehling's reagent): Forms copper tartrate complex
\end{itemize}
\section{Ores and alloys}
\subsection{Ores}
\begin{longtable}{p{3cm}p{6cm}p{3.5cm}}
\toprule
English Name & Properties & Formula \\
\midrule
\endfirsthead
\toprule
English Name & Properties & Formula \\
\midrule
\endhead
Hematite & Red-brown iron ore, most important iron ore & \ce{Fe2O3} \\
Magnetite & Black magnetic iron ore, high iron content & \ce{Fe3O4} \\
Limonite & Yellow-brown hydrated iron oxide & \ce{2Fe2O3.3H2O} \\
Siderite & Iron carbonate, light colored & \ce{FeCO3} \\
Pyrite & Brass-yellow, fool's gold, used for sulfuric acid & \ce{FeS2} \\
Chalcopyrite & Brass-yellow copper ore, most abundant copper ore & \ce{CuFeS2} \\
Chalcocite & Dark gray copper sulfide & \ce{Cu2S} \\
Malachite & Green basic copper carbonate & \ce{Cu2CO3(OH)2} \\
Azurite & Blue basic copper carbonate & \ce{Cu3(CO3)2(OH)2} \\
Cuprite & Red copper oxide & \ce{Cu2O} \\
Bauxite & Reddish aluminum ore, clay-like & \ce{Al2O3.nH2O} \\
Cryolite & White, used as flux in aluminum production & \ce{Na3AlF6} \\
Corundum & Very hard aluminum oxide, includes ruby/sapphire & \ce{Al2O3} \\
Galena & Lead-gray, cubic crystals, main lead ore & \ce{PbS} \\
Cerussite & White lead carbonate & \ce{PbCO3} \\
Anglesite & White lead sulfate & \ce{PbSO4} \\
Sphalerite (Zinc blende) & Yellow-brown to black, main zinc ore & \ce{ZnS} \\
Smithsonite & White zinc carbonate & \ce{ZnCO3} \\
Zincite & Red-orange zinc oxide & \ce{ZnO} \\
Cassiterite & Brown-black tin oxide, main tin ore & \ce{SnO2} \\
Cinnabar & Bright red mercury sulfide, main mercury ore & \ce{HgS} \\
Argentite & Dark gray silver sulfide & \ce{Ag2S} \\
Calamine & Zinc silicate ore & \ce{Zn4Si2O7(OH)2.H2O} \\
Chromite & Black chromium iron oxide, main chromium ore & \ce{FeCr2O4} \\
Pyrolusite & Black manganese dioxide ore & \ce{MnO2} \\
Rhodochrosite & Pink manganese carbonate & \ce{MnCO3} \\
Rutile & Red-brown titanium dioxide & \ce{TiO2} \\
Ilmenite & Black iron titanium oxide & \ce{FeTiO3} \\
Barite & White barium sulfate, heavy & \ce{BaSO4} \\
Witherite & White barium carbonate & \ce{BaCO3} \\
Scheelite & White tungsten calcium ore & \ce{CaWO4} \\
Wolframite & Black iron manganese tungsten ore & \ce{(Fe,Mn)WO4} \\
Molybdenite & Gray, soft molybdenum sulfide & \ce{MoS2} \\
Carnallite & White-red potassium magnesium salt & \ce{KCl.MgCl2.6H2O} \\
Sylvite & White-red potassium chloride & \ce{KCl} \\
Halite (Rock salt) & Transparent-white sodium chloride & \ce{NaCl} \\
Fluorite (Fluorspar) & Colorful calcium fluoride & \ce{CaF2} \\
Limestone & White-gray calcium carbonate sedimentary rock & \ce{CaCO3} \\
Dolomite & White-pink calcium magnesium carbonate & \ce{CaMg(CO3)2} \\
Gypsum & White calcium sulfate dihydrate & \ce{CaSO4.2H2O} \\
Anhydrite & White calcium sulfate & \ce{CaSO4} \\
Apatite & Green-blue calcium phosphate & \ce{Ca5(PO4)3(F,Cl,OH)} \\
Phosphorite & Gray-brown calcium phosphate rock & \ce{Ca3(PO4)2} \\
\bottomrule
\end{longtable}
\subsection{Alloys}
\begin{longtable}{p{2.5cm}p{3.5cm}p{4.5cm}p{3cm}}
\toprule
English Name & Elements & Properties & Application \\
\midrule
\endfirsthead
\toprule
English Name & Elements & Properties & Application \\
\midrule
\endhead
Steel & Fe, C (< 2\%) & Strong, hard, malleable & Construction, tools \\
Stainless steel & Fe, Cr (10-20\%), Ni & Corrosion-resistant, strong & Cutlery, medical \\
Cast iron & Fe, C (2-4\%) & Brittle, hard, good casting & Engine blocks, pipes \\
Brass & Cu (55-95\%), Zn & Golden, corrosion-resistant & Musical instruments, fittings \\
Bronze & Cu (88\%), Sn (12\%) & Hard, corrosion-resistant & Sculptures, bearings \\
Aluminum bronze & Cu, Al (5-11\%) & Strong, corrosion-resistant & Marine hardware, coins \\
Cupronickel & Cu (75\%), Ni (25\%) & Silver-colored, corrosion-resistant & Coins, marine uses \\
German silver & Cu, Ni, Zn & Silver-white, no silver & Cutlery, jewelry base \\
Phosphor bronze & Cu, Sn, P & Elastic, wear-resistant & Springs, electrical \\
Gunmetal & Cu, Sn (10\%), Zn (2\%) & Corrosion-resistant, tough & Gears, bearings \\
Duralumin & Al (94\%), Cu (4\%), Mg & Light, strong, age-hardenable & Aircraft, aerospace \\
Magnalium & Al (70-95\%), Mg & Very light, strong & Aircraft parts \\
Alnico & Al, Ni, Co, Fe & Strong magnetic & Permanent magnets \\
Solder & Sn (60\%), Pb (40\%) & Low melting point & Electrical joints \\
Lead-free solder & Sn, Cu, Ag & Low melting, no lead toxicity & Electronics \\
Pewter & Sn (85-99\%), Sb, Cu & Soft, silvery, malleable & Decorative items \\
Babbitt metal & Sn, Sb, Cu & Low friction, soft & Bearing surfaces \\
Type metal & Pb, Sn, Sb & Expands on cooling & Printing type \\
Wood's metal & Bi, Pb, Sn, Cd & Very low melting (70$^\circ$C) & Fire sprinklers, fuses \\
Rose's metal & Bi, Pb, Sn & Low melting (98$^\circ$C) & Fusible alloys \\
Nichrome & Ni (80\%), Cr (20\%) & High electrical resistance, heat-resistant & Heating elements \\
Monel metal & Ni (67\%), Cu (30\%) & Corrosion-resistant, strong & Marine, chemical \\
Invar & Fe (64\%), Ni (36\%) & Very low thermal expansion & Precision instruments \\
Permalloy & Fe (20\%), Ni (80\%) & High magnetic permeability & Transformers, sensors \\
Constantan & Cu (55\%), Ni (45\%) & Constant electrical resistance & Thermocouples \\
Manganin & Cu (86\%), Mn (12\%), Ni & Stable resistance vs. temperature & Precision resistors \\
Stellite & Co, Cr, W, C & Very hard, wear-resistant & Cutting tools \\
Hastelloy & Ni, Mo, Cr, Fe & Excellent corrosion resistance & Chemical equipment \\
Titanium alloy & Ti (90\%), Al (6\%), V (4\%) & High strength-to-weight ratio & Aerospace, implants \\
Amalgam & Hg, Ag, Sn, Cu & Soft, hardens over time & Dental fillings \\
Elektron & Mg (90\%), Al, Zn & Extremely light & Aircraft parts \\
Beryllium copper & Cu (98\%), Be (2\%) & Non-sparking, elastic & Explosion-proof tools \\
White gold & Au, Ni/Pd, Zn & White-silver appearance & Jewelry \\
Rose gold & Au (75\%), Cu (22.5\%), Ag & Pink-red color & Jewelry \\
Sterling silver & Ag (92.5\%), Cu (7.5\%) & Harder than pure silver & Jewelry, tableware \\
Britannia silver & Ag (95.8\%), Cu & Softer, higher silver content & High-end silverware \\
Nitinol & Ni (55\%), Ti (45\%) & Shape memory effect & Medical devices, actuators \\
Zamak & Zn, Al, Mg, Cu & Good castability, moderate strength & Die castings \\
Babbitt & Sn, Sb, Cu (or Pb base) & Low friction, good embeddability & Bearings \\
Bell metal & Cu (78\%), Sn (22\%) & Resonant, hard & Bells, cymbals \\
\bottomrule
\end{longtable}
\section{Reactions}
\subsection{Types of reactions}
\subsubsection{Combination reaction (Synthesis reaction)}
\textbf{Definition:} Two or more substances combine to form a single product.
\textbf{General form:} \ce{A + B -> AB}
\textbf{Examples:}
\begin{itemize}
\item Formation of water: \ce{2H2 + O2 -> 2H2O}
\item Formation of ammonia: \ce{N2 + 3H2 -> 2NH3}
\item Metal oxide formation: \ce{2Mg + O2 -> 2MgO}
\item Salt formation: \ce{2Na + Cl2 -> 2NaCl}
\end{itemize}
\subsubsection{Decomposition reaction}
\textbf{Definition:} A single compound breaks down into two or more simpler substances.
\textbf{General form:} \ce{AB -> A + B}
\textbf{Examples:}
\begin{itemize}
\item Thermal decomposition of calcium carbonate: \ce{CaCO3 ->[heat] CaO + CO2 ^}
\item Electrolysis of water: \ce{2H2O ->[electrolysis] 2H2 ^ + O2 ^}
\item Decomposition of hydrogen peroxide: \ce{2H2O2 ->[MnO2] 2H2O + O2 ^}
\item Decomposition of potassium chlorate: \ce{2KClO3 ->[heat] 2KCl + 3O2 ^}
\end{itemize}
\subsubsection{Displacement reaction (Substitution reaction)}
\textbf{Definition:} One element replaces another element in a compound.
\textbf{General form:} \ce{A + BC -> AC + B}
\textbf{Examples:}
\begin{itemize}
\item Zinc displacing hydrogen: \ce{Zn + 2HCl -> ZnCl2 + H2 ^}
\item Chlorine displacing bromine: \ce{Cl2 + 2NaBr -> 2NaCl + Br2}
\item Magnesium displacing copper: \ce{Mg + CuSO4 -> MgSO4 + Cu}
\item Iron displacing copper: \ce{Fe + CuSO4 -> FeSO4 + Cu}
\end{itemize}
\subsubsection{Double displacement reaction (Metathesis reaction)}
\textbf{Definition:} Exchange of ions between two compounds.
\textbf{General form:} \ce{AB + CD -> AD + CB}
\textbf{Examples:}
\begin{itemize}
\item Precipitation: \ce{AgNO3 + NaCl -> AgCl v + NaNO3}
\item Neutralization: \ce{HCl + NaOH -> NaCl + H2O}
\item Formation of barium sulfate: \ce{BaCl2 + H2SO4 -> BaSO4 v + 2HCl}
\end{itemize}
\subsubsection{Redox reaction (Oxidation-reduction reaction)}
\textbf{Definition:} Transfer of electrons between species, involving change in oxidation states.
\textbf{Oxidation:} Loss of electrons, increase in oxidation number.
\textbf{Reduction:} Gain of electrons, decrease in oxidation number.
\textbf{Examples:}
\begin{itemize}
\item Combustion: \ce{C + O2 -> CO2}
\item Permanganate oxidation: \ce{2KMnO4 + 5H2C2O4 + 3H2SO4 -> K2SO4 + 2MnSO4 + 10CO2 ^ + 8H2O}
\item Dichromate oxidation: \ce{K2Cr2O7 + 14HCl -> 2KCl + 2CrCl3 + 3Cl2 ^ + 7H2O}
\item Zinc-copper cell: \ce{Zn + Cu^2+ -> Zn^2+ + Cu}
\end{itemize}
\subsubsection{Acid-base reaction (Neutralization)}
\textbf{Definition:} Reaction between an acid and a base to produce salt and water.
\textbf{General form:} \ce{Acid + Base -> Salt + Water}
\textbf{Examples:}
\begin{itemize}
\item Strong acid-strong base: \ce{HCl + NaOH -> NaCl + H2O}
\item Weak acid-strong base: \ce{CH3COOH + NaOH -> CH3COONa + H2O}
\item Dibasic acid: \ce{H2SO4 + 2KOH -> K2SO4 + 2H2O}
\item Carbonate with acid: \ce{Na2CO3 + 2HCl -> 2NaCl + H2O + CO2 ^}
\end{itemize}
\subsubsection{Precipitation reaction}
\textbf{Definition:} Formation of an insoluble solid (precipitate) from aqueous solutions.
\textbf{Examples:}
\begin{itemize}
\item Silver chloride: \ce{Ag+ + Cl- -> AgCl v} (white precipitate)
\item Lead iodide: \ce{Pb^2+ + 2I- -> PbI2 v} (yellow precipitate)
\item Iron(III) hydroxide: \ce{Fe^3+ + 3OH- -> Fe(OH)3 v} (brown precipitate)
\item Copper(II) hydroxide: \ce{Cu^2+ + 2OH- -> Cu(OH)2 v} (blue precipitate)
\end{itemize}
\subsection{Organic reactions}
\subsubsection{Halogenation reaction}
\textbf{Definition:} Introduction of halogen atoms (F, Cl, Br, I) into organic molecules.
\textbf{Free radical halogenation (alkanes):}
\begin{itemize}
\item Chlorination of methane: \ce{CH4 + Cl2 ->[UV light] CH3Cl + HCl}
\item Further substitution: \ce{CH3Cl + Cl2 -> CH2Cl2 + HCl}
\item Bromination of ethane: \ce{C2H6 + Br2 ->[UV light] C2H5Br + HBr}
\end{itemize}
\textbf{Electrophilic halogenation (aromatic):}
\begin{itemize}
\item Bromination of benzene: \ce{C6H6 + Br2 ->[FeBr3] C6H5Br + HBr}
\item Chlorination of benzene: \ce{C6H6 + Cl2 ->[AlCl3] C6H5Cl + HCl}
\item Iodination of benzene: \ce{C6H6 + I2 ->[HNO3] C6H5I + HI}
\end{itemize}
\textbf{Addition halogenation (alkenes):}
\begin{itemize}
\item Bromination of ethene: \ce{C2H4 + Br2 -> C2H4Br2}
\item Test for unsaturation: Decolorization of bromine water
\item Chlorination of propene: \ce{C3H6 + Cl2 -> C3H6Cl2}
\end{itemize}
\subsubsection{Nucleophilic substitution}
\textbf{Definition:} Replacement of a leaving group by a nucleophile.
\textbf{S$_{\mathbf{N}}$1 mechanism (unimolecular):}
\begin{itemize}
\item Two-step process via carbocation intermediate
\item Rate depends only on substrate concentration
\item Favored by tertiary halides and polar solvents
\item Example: \ce{(CH3)3CBr + H2O -> (CH3)3COH + HBr}
\end{itemize}
\textbf{S$_{\mathbf{N}}$2 mechanism (bimolecular):}
\begin{itemize}
\item One-step process with backside attack
\item Rate depends on both substrate and nucleophile concentration
\item Favored by primary halides and aprotic solvents
\item Inversion of configuration (Walden inversion)
\item Example: \ce{CH3Br + OH- -> CH3OH + Br-}
\end{itemize}
\textbf{Common nucleophiles:}
\begin{itemize}
\item Hydroxide (OH$^-$): Forms alcohols
\item Alkoxide (RO$^-$): Forms ethers
\item Cyanide (CN$^-$): Forms nitriles
\item Ammonia (NH$_3$): Forms amines
\item Water (H$_2$O): Forms alcohols (weak nucleophile)
\end{itemize}
\subsubsection{Nucleophilic addition}
\textbf{Definition:} Addition of a nucleophile to a carbonyl group.
\textbf{Examples:}
\begin{itemize}
\item Cyanohydrin formation: \ce{CH3CHO + HCN -> CH3CH(OH)CN}
\item Grignard addition: \ce{CH3MgBr + CH2O -> CH3CH2OH} (after hydrolysis)
\item Bisulfite addition: \ce{RCHO + NaHSO3 -> RCH(OH)SO3Na}
\end{itemize}
\subsubsection{Electrophilic addition}
\textbf{Definition:} Addition of an electrophile to a multiple bond.
\textbf{Examples:}
\begin{itemize}
\item Hydrohalogenation: \ce{C2H4 + HBr -> C2H5Br}
\item Markovnikov's rule: H adds to carbon with more H atoms
\item Hydration: \ce{C2H4 + H2O ->[H+] C2H5OH}
\item Addition of sulfuric acid: \ce{C2H4 + H2SO4 -> C2H5OSO3H}
\end{itemize}
\subsubsection{Elimination reaction}
\textbf{Definition:} Removal of atoms or groups to form multiple bonds.
\textbf{Dehydrohalogenation (E1 and E2):}
\begin{itemize}
\item E2 mechanism: \ce{C2H5Br + KOH ->[alcohol, heat] C2H4 ^ + KBr + H2O}
\item Zaitsev's rule: Major product is more substituted alkene
\item E1 mechanism: Two-step via carbocation
\end{itemize}
\textbf{Dehydration of alcohols:}
\begin{itemize}
\item Ethanol dehydration: \ce{C2H5OH ->[H2SO4, heat] C2H4 ^ + H2O}
\item Intramolecular (forms alkene) vs intermolecular (forms ether)
\end{itemize}
\subsubsection{Oxidation reactions}
\textbf{Oxidation of alcohols:}
\begin{itemize}
\item Primary to aldehyde: \ce{RCH2OH ->[oxidation] RCHO ->[oxidation] RCOOH}
\item Secondary to ketone: \ce{R2CHOH ->[oxidation] R2CO}
\item Tertiary alcohols: Resistant to oxidation
\item Oxidizing agents: \ce{K2Cr2O7/H2SO4}, \ce{KMnO4}, \ce{CrO3}
\end{itemize}
\textbf{Oxidation of aldehydes:}
\begin{itemize}
\item To carboxylic acid: \ce{RCHO ->[oxidation] RCOOH}
\item Mild oxidizing agents work (e.g., Tollens' reagent, Fehling's reagent)
\end{itemize}
\subsubsection{Reduction reactions}
\textbf{Reduction of carbonyl compounds:}
\begin{itemize}
\item Aldehyde to primary alcohol: \ce{RCHO ->[reduction] RCH2OH}
\item Ketone to secondary alcohol: \ce{R2CO ->[reduction] R2CHOH}
\item Reducing agents: \ce{LiAlH4}, \ce{NaBH4}, \ce{H2/Pt}
\end{itemize}
\textbf{Reduction of carboxylic acids:}
\begin{itemize}
\item To primary alcohol: \ce{RCOOH ->[LiAlH4] RCH2OH}
\item Requires strong reducing agent
\end{itemize}
\subsubsection{Condensation reactions}
\textbf{Definition:} Combination of molecules with elimination of small molecule (usually water).
\textbf{Esterification:}
\begin{itemize}
\item Fischer esterification: \ce{RCOOH + R-OH <=>[H+] RCOOR + H2O}
\item Reversible reaction, equilibrium can be shifted
\end{itemize}
\textbf{Aldol condensation:}
\begin{itemize}
\item Self-condensation of aldehydes: \ce{2CH3CHO ->[OH-] CH3CH(OH)CH2CHO}
\item Followed by dehydration: \ce{CH3CH(OH)CH2CHO -> CH3CH=CHCHO + H2O}
\end{itemize}
\subsubsection{Hydrolysis reactions}
\textbf{Ester hydrolysis:}
\begin{itemize}
\item Acidic: \ce{RCOOR + H2O <=>[H+] RCOOH + R-OH}
\item Basic (saponification): \ce{RCOOR + NaOH -> RCOONa + R-OH}
\end{itemize}
\textbf{Amide hydrolysis:}
\begin{itemize}
\item Acidic: \ce{RCONH2 + H2O + HCl ->[heat] RCOOH + NH4Cl}
\item Basic: \ce{RCONH2 + NaOH ->[heat] RCOONa + NH3 ^}
\end{itemize}
\subsection{Named reactions and tests}
\subsubsection{Silver mirror reaction (Tollens' test)}
\textbf{Purpose:} Test for aldehydes; distinguishes aldehydes from ketones.
\textbf{Reagent:} Tollens' reagent - ammoniacal silver nitrate solution \ce{[Ag(NH3)2]+}
\textbf{Principle:} Aldehydes are oxidized to carboxylic acids while silver ions are reduced to metallic silver, forming a silver mirror on the test tube.
\textbf{Preparation of reagent:}
\begin{itemize}
\item \ce{AgNO3 + NaOH -> AgOH v + NaNO3}
\item \ce{AgOH + 2NH3 -> [Ag(NH3)2]OH} (soluble complex)
\end{itemize}
\textbf{Reaction with aldehyde:}
\begin{itemize}
\item \ce{RCHO + 2[Ag(NH3)2]+ + 2OH- -> RCOO- + 2Ag v + 4NH3 + H2O}
\item Formaldehyde: \ce{HCHO + 4[Ag(NH3)2]+ + 4OH- -> CO3^2- + 4Ag v + 8NH3 + 2H2O}
\item Glucose (reducing sugar): \ce{C6H12O6 + 2[Ag(NH3)2]+ + 2OH- -> C6H12O7 + 2Ag v + 4NH3}
\end{itemize}
\textbf{Observation:} Silver mirror forms on the inner surface of the test tube (positive test).
\textbf{Note:} Ketones do not give this reaction. Some $\alpha$-hydroxy ketones may give weakly positive results.
\subsubsection{Fehling's test (Benedict's test)}
\textbf{Purpose:} Test for reducing sugars and aldehydes.
\textbf{Reagent:} Fehling's solution (mixture of Fehling's A and B)
\begin{itemize}
\item Fehling's A: Copper(II) sulfate solution \ce{CuSO4}
\item Fehling's B: Alkaline sodium potassium tartrate solution (Rochelle salt)
\end{itemize}
\textbf{Principle:} Aldehydes reduce Cu$^{2+}$ (blue) to Cu$_2$O (red-brown precipitate).
\textbf{Reaction:}
\begin{itemize}
\item \ce{RCHO + 2Cu^2+ + 5OH- ->[heat] RCOO- + Cu2O v + 3H2O}
\item With glucose: \ce{C6H12O6 + 2Cu^2+ + 5OH- -> C6H12O7 + Cu2O v + 3H2O}
\end{itemize}
\textbf{Observation:} Blue solution turns to red-brown precipitate of cuprous oxide.
\textbf{Benedict's reagent:} Similar test using copper citrate complex instead of tartrate.
\subsubsection{Iodine clock reaction}
\textbf{Purpose:} Demonstration of reaction kinetics and reaction mechanisms.
\textbf{Principle:} A sudden color change occurs after a predictable time period, demonstrating the relationship between reaction rate and concentration.
\textbf{Common version (Landolt reaction):}
\begin{itemize}
\item Reaction A (slow): \ce{H2O2 + 2I- + 2H+ -> I2 + 2H2O}
\item Reaction B (fast): \ce{I2 + 2S2O3^2- -> 2I- + S4O6^2-}
\item When thiosulfate is consumed, free iodine reacts with starch indicator
\item \ce{I2 + starch -> blue complex}
\end{itemize}
\textbf{Alternative version (Dushman reaction):}
\begin{itemize}
\item \ce{IO3- + 3HSO3- -> I- + 3SO4^2- + 3H+} (slow)
\item \ce{IO3- + 5I- + 6H+ -> 3I2 + 3H2O} (fast, when HSO$_3^-$ depleted)
\end{itemize}
\textbf{Observation:} Solution remains colorless for a fixed time, then suddenly turns deep blue.
\textbf{Variables affecting clock time:}
\begin{itemize}
\item Concentration of reactants
\item Temperature
\item Presence of catalysts
\end{itemize}
\subsubsection{Biuret test}
\textbf{Purpose:} Test for proteins and peptide bonds; detects presence of peptide linkages.
\textbf{Reagent:} Biuret reagent (copper sulfate in alkaline solution)
\begin{itemize}
\item \ce{CuSO4} in dilute \ce{NaOH} solution
\end{itemize}
\textbf{Principle:} Peptide bonds form a colored complex with Cu$^{2+}$ ions in alkaline solution.
\textbf{Reaction:} Copper ions coordinate with nitrogen atoms of peptide bonds, forming a violet-purple complex.
\textbf{Named after:} Biuret \ce{H2N-CO-NH-CO-NH2}, the simplest compound that gives this test.
\textbf{Observation:}
\begin{itemize}
\item Negative (no protein): Blue color (from Cu$^{2+}$ ions)
\item Positive (protein present): Violet to purple color
\item Intensity depends on number of peptide bonds
\end{itemize}
\textbf{Requirements:}
\begin{itemize}
\item At least two peptide bonds required for positive test
\item Single amino acids do not give positive result
\item Dipeptides give weak positive result
\item Tripeptides and proteins give strong positive result
\end{itemize}
\textbf{Application:}
\begin{itemize}
\item Qualitative test for proteins
\item Semi-quantitative determination of protein concentration
\item Used in biochemistry and food analysis
\end{itemize}
\subsubsection{Lucas test}
\textbf{Purpose:} Distinguish between primary, secondary, and tertiary alcohols.
\textbf{Reagent:} Lucas reagent (anhydrous \ce{ZnCl2} in concentrated \ce{HCl})
\textbf{Principle:} Alcohols react with HCl in presence of \ce{ZnCl2} to form alkyl chlorides (insoluble, appears as cloudiness).
\textbf{Reactions:}
\begin{itemize}
\item \ce{ROH + HCl ->[ZnCl2] RCl + H2O}
\item Rate: Tertiary > Secondary > Primary
\end{itemize}
\textbf{Observations:}
\begin{itemize}
\item Tertiary alcohol: Immediate cloudiness (turbidity)
\item Secondary alcohol: Cloudiness within 5-10 minutes
\item Primary alcohol: No reaction at room temperature
\end{itemize}
\subsubsection{Diazotization reaction}
\textbf{Purpose:} Formation of diazonium salts from primary aromatic amines.
\textbf{Reagent:} Sodium nitrite (\ce{NaNO2}) and dilute \ce{HCl} at 0-5$^\circ$C
\textbf{Reaction:}
\begin{itemize}
\item \ce{C6H5NH2 + NaNO2 + 2HCl ->[cold] C6H5N2+Cl- + NaCl + 2H2O}
\item Temperature must be kept low to prevent decomposition
\end{itemize}
\textbf{Applications:}
\begin{itemize}
\item Azo dye synthesis (coupling with phenols or aromatic amines)
\item Sandmeyer reaction (replacement of diazonium group)
\item Gattermann reaction
\end{itemize}
\subsubsection{Friedel-Crafts reactions}
\textbf{Friedel-Crafts alkylation:}
\begin{itemize}
\item \ce{C6H6 + RCl ->[AlCl3] C6H5R + HCl}
\item Introduces alkyl group onto aromatic ring
\item Catalyst: \ce{AlCl3} or \ce{FeCl3}
\item Problem: Polyalkylation and rearrangement
\end{itemize}
\textbf{Friedel-Crafts acylation:}
\begin{itemize}
\item \ce{C6H6 + RCOCl ->[AlCl3] C6H5COR + HCl}
\item Introduces acyl group onto aromatic ring
\item More controlled than alkylation (no polyacylation)
\item Forms ketones
\end{itemize}
\subsubsection{Kolbe's reaction (Kolbe-Schmitt reaction)}
\textbf{Purpose:} Synthesis of salicylic acid from phenol.
\textbf{Reaction:}
\begin{itemize}
\item \ce{C6H5OH + NaOH -> C6H5ONa + H2O}
\item \ce{C6H5ONa + CO2 ->[heat, pressure] C6H4(OH)COONa} (sodium salicylate)
\item \ce{C6H4(OH)COONa + HCl -> C6H4(OH)COOH + NaCl} (salicylic acid)
\end{itemize}
\textbf{Conditions:} High pressure (5-7 atm), 125-130$^\circ$C
\textbf{Application:} Industrial production of aspirin (acetylsalicylic acid)
\subsubsection{Cannizzaro reaction}
\textbf{Purpose:} Disproportionation of aldehydes lacking $\alpha$-hydrogen.
\textbf{Principle:} In strong base, one aldehyde molecule is oxidized to carboxylate, another is reduced to alcohol.
\textbf{Reaction:}
\begin{itemize}
\item \ce{2RCHO + NaOH ->[no alpha-H] RCOONa + RCH2OH}
\item Example: \ce{2C6H5CHO + NaOH -> C6H5COONa + C6H5CH2OH}
\item Formaldehyde: \ce{2HCHO + NaOH -> HCOONa + CH3OH}
\end{itemize}
\textbf{Requirement:} Aldehyde must lack $\alpha$-hydrogen atoms.
\subsubsection{Haloform reaction}
\textbf{Purpose:} Test for methyl ketones; produces haloform.
\textbf{Reagent:} Halogen (\ce{I2}, \ce{Br2}, or \ce{Cl2}) in alkaline solution
\textbf{Reaction:}
\begin{itemize}
\item \ce{CH3COR + 3I2 + 4NaOH -> RCOONa + CHI3 v + 3NaI + 3H2O}
\item Iodoform (\ce{CHI3}): Yellow precipitate with characteristic odor
\end{itemize}
\textbf{Positive test:}
\begin{itemize}
\item Methyl ketones: \ce{R-CO-CH3}
\item Acetaldehyde: \ce{CH3CHO}
\item Ethanol: \ce{CH3CH2OH} (oxidized to acetaldehyde first)
\end{itemize}
\textbf{Iodoform test:} Specific for compounds with \ce{CH3CO-} or \ce{CH3CH(OH)-} structure.
\section{Hydrocarbons and their Halogen derivatives}
\section{Alicyclic compounds and aromatic compounds}
\section{Alcohol, phenols, ketones and aldehyde}
\section{Carboxylic acids and esters}
\section{Amines, amides and nitriles}
\section{Thiols and thioethers}
\section{Macromolecule}
\section{Plastics}
\section{Organic compounds in everyday life}
\end{document}